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ON THE SOBOLEV SPACE OF ISOMETRIC
IMMERSIONS

Mohammad Reza Pakzad

Abstract

We prove that every W 2,2 isometric immersion from a convex
regular domain of R

2 into R
3 can be approximated in W 2,2-norm

by smooth isometric immersions from the same domain into R
3.

1. Introduction

1.1. Motivation. In this paper we study isometric immersions with
square integrable curvatures. The motivation for this is twofold. First
the existence, rigidity and flexibility of isometric immersions of an m-
dimensional manifold into R

n is a long standing problem in differential
geometry. The second motivation arises from the study of curvature
functionals in elasticity.

In his pioneering paper [26] John Nash proved that every n-dimensio-
nal C3-smooth Riemannian manifold can be confined in an Euclidean
space of dimension 1

2n(n + 1)(3n + 11), i.e., it can be embedded iso-
metrically in any small portion of this space. (See [9], [10] for further
developments). On the other hand there are rigidity results. A classical
result in the differential geometry of surfaces is that an isometric em-
bedding of the 2-dimensional disk into a ball of radius less than 1/2 in
R

3 cannot be C2-smooth; for generalisations for isometric immersions
Mm → R

n, n < 2m, see [13] and [36]. One important insight was that
the regularity of the immersion plays a crucial role. Hilbert showed
that C2 isometric immersions of S2 into R

3 have to be rigid motions.
However, Nash [25] constructed C1 isometric immersions of Sn into R

m,
m ≥ n + 2, whose image is contained in an arbitrarily small ball. This
result was extended to m = n + 1 by Kuiper [16].

Here we study isometric immersions in the class W 2,2 which, roughly
speaking, lies between C1 and C2. We prove that immersed flat surfaces
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in R
3 with W 2,2 regularity are developable. Therefore we can deduce

that the unit disc is not W 2,2-confinable in a ball of radius less than
1/2.

The surfaces with L2 integrable second fundamental form have been
studied from several points of view. T. Toro [34] proved the existence
of bilipschitz parameterisations for the graphs of W 2,2 functions on R

2.
S. Müller and V. Šverák [24], studying surfaces with finite total cur-
vature, improved Toro’s result by showing the existence of conformal
parameterisations with continuous metric for these graphs. L. Simon
[32] considered another interesting curvature functional, the Willmore
functional. In the context of nonlinear elasticity, the energy functional
for the Föppl-von Karman equations is largely studied in plate theories
for thin elastic bodies. (See, e.g., [1], [5], [19] and [35].)

Here we focus on nonlinear bending theory of Kirchhoff [15] which
consists in minimising the bending energy among immersions u : Ω ⊂
R

2 → R
3 subject to the isometry constraint

(∇u)T∇u = Id.(1.1)

The bending energy is given by

Eb(u) =
∫

Ω
|II(u)|2,(1.2)

where II(u) is the second fundamental form of u.
The finite energy solutions are exactly the W 2,2 isometric immersions

of Ω into R
3 studied in this paper. The smooth solutions are of particular

interest. In [29] O. Pantz mentioned that a density result for smooth
maps in the space of Sobolev isometric immersions would be sufficient
in order to prove that Kirchhoff’s nonlinear plate theory is the Γ-limit of
a constrained nonlinear elasticity theory. Γ-convergence of the standard
3-dimensional nonlinear elasticity was proven later on by G. Friesecke,
R.D. James and S. Müller [7], [8]. (See also [18], [2], [28].) As the main
result of our paper we prove that smooth maps are strongly dense in
the Sobolev space of W 2,2 isometric immersions from a convex domain
of R

2 into R
3.

There are several other interesting related aspects to consider. Given
a closed manifold N , we may pose the more general problem of the
density of smooth maps in a given Sobolev space with the constraint
∇u ∈ N . The case of W 2,2 isometric immersions of m-dimensional
domains into R

n for n ≥ m is of particular interest here. Another
important issue involves the approximate minimisers of (1.2) which do
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satisfy (1.1) except on a set of small measure, where the stretching
energy concentrates, subjected to various boundary constraints. We
refer to [19], [2], [5] and [35] for the detailed discussion of this domain.
Many aspects remain however unclear, as for example the distribution
of the concentration set in the domain.

1.2. Survey of results. Let Ω be a bounded regular convex domain in
R

2 with Lipschitz boundary. We define the space of W 2,2 local isometries
from Ω in the 3 dimensional Euclidean space

I2,2(Ω, R3) :=
{
u ∈ W 2,2(Ω, R3); ∇u ∈ O(2, 3) a.e.

}
where

O(2, 3) :=
{
M ∈ M3×2; MT M = Id

}
.

This space inherits the strong and weak topology of W 2,2(Ω, R3) and is
closed under the weak convergence.

Our main result is the following:

Theorem I. Smooth maps are strongly dense in I2,2(Ω, R3). Equiv-
alently, for any map f ∈ W 1,2(Ω, R2) with a.e. singular symmetric gra-
dient there exists a sequence fm of smooth maps satisfying the same
condition and converging to f in W 1,2(Ω, R2).

Remark 1.1. The space I2,2(Ω, R3) is a borderline space in the sense
that smooth maps are not dense in I2,p, the space of isometric immer-
sions with second derivative in Lp, for p < 2. Consider any length
preserving curve mapping the boundary of the two-dimensional unit
disk into a small enough open subset of the unit sphere S2, and extend
this map over the disk and into the unit ball radially. This is an iso-
metric immersion in W 2,p for p < 2 which cannot be approximated by
smooth maps in the W 2,p norm. Respectively, the radial map x

‖x‖ is in
W 1,2−ε(B2, R2) for ε > 0 and cannot be approximated by smooth maps
in W 1,1.

Remark 1.2. We do not require our approximating sequences to be
smooth at the boundary. For a discussion of the boundary regularity of
maps in I2,2(Ω, R3) see [23].

To put this result in perspective, we recall that the problem of density
of smooth maps in Sobolev spaces between manifolds W 1,p(M, N) where
the constraint is on the value of the map itself has been a quite active
domain of research in recent years. The respective topologies of M and
N and integer part of p determine whether smooth maps are dense in
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this space [3], [4], [11], [27] and [12]. However the nature of the problem
we consider in this paper seems to be different and is to our knowledge
the first density result for Sobolev spaces of maps with constraints on
the value of the gradient.

In order to prove Theorem I we need to show that W 2,2 immersed
flat surfaces in R

3 are developable. For C2 isometric immersions this
assertion is contained in the more general results of P. Hartman and
L. Nirenberg [13]. A.V. Pogorelov [30, Chapter II], [31, Chapter IX]
has obtained the same result under a somewhat weaker hypotheses. He
only requires that the immersion is C1 and that the image of the Gauss
map has measure zero in S2. In general maps in W 2,2 fail to be in C1

(critical Sobolev embedding). S. Müller and the author have discussed
the C1 regularity of W 2,2 isometric immersions in [23].

Theorem II. Let u ∈ I2,2(Ω, R3). Then for every point x ∈ Ω, there
exists either a neighbourhood U of x, or a segment passing through it
and joining ∂Ω at its both ends, on which u is affine.

Remark 1.3. Note that if x ∈ Ω is of the first type then the ∂U \∂Ω
is a piecewise affine curve for the maximal open set U having the above
property.

Corollary 1.1 (See [36]). There is no W 2,2 embedding of the 2-di-
mensional disc into a three-dimensional Euclidean ball of radius r <
1/2.

The heuristic idea behind Theorem II is the following. Since the im-
mersion u has L2 integrable second derivatives, the Gaussian curvature
of the immersed surface should be an L1 integrable function on its do-
main. In contrast in the case of a cone which is the typical example of
a non-developable singular surface, the Gaussian curvature is the Dirac
mass concentrated at the vertex.

The main ingredient of the proof of Theorem II is the following result
on the degenerate Monge-Ampère equations:

Proposition 1.1. Let f ∈ W 1,2(Ω, R2) be a map with almost every-
where symmetric singular (i.e., of zero determinant) gradient. Then for
every point x ∈ Ω, there exists either a neighbourhood U of x, or a seg-
ment passing through it and joining ∂Ω at its both ends, on which f is
constant.

Corollary 1.2. In the setting of Proposition 1.1, on the regions where
f is not constant the normal vector field orthogonal to the inverse images
is locally Lipschitz and thus integrable.
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Figure 1. The inverse images of f .

Remark 1.4. Since ∇f is symmetric, we can write f = ∇φ for some
φ ∈ W 2,2(Ω, R) and we have

det(∇2φ) = 0

which is the degenerate Monge-Ampère equation. Note that the graph
of φ is a flat surface in R

3.

Remark 1.5. An interesting counter example which shows that the
conditions are optimal is the radial map x

‖x‖ ∈ W 1,2−ε(B2, R2) for ε > 0.

B. Kirchheim has proved Proposition 1.1 under an extra assumption
of the Lipschitz continuity of f . (See [14], Proposition 2.29.) The proof
we present here for W 1,2 case is essentially the same.

The paper is organised as follows. In Section 2 we give a prove of
Proposition 1.1 based on which we prove the developability theorem
for W 2,2 isometric immersions. In Section 3 we prove the main density
result. The main idea of the proof of Theorem I is to use the developa-
bility of the image. We reparameterise the map u ∈ I2,2(Ω, R3) along its
leading curves; the curves in the domain and on the image surface which
are orthogonal to the directions in which one of the principle curvatures
vanish. Then by writing the equations of geodesic and normal curvature
of a leading curve in the image related to its Darboux frame we man-
age to reduce the problem to the approximation of these functions by
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smooth functions with respect to suitable norms. This gives rise to an
interesting correspondence between maps in I2,2(B2, R3) which have no
affine part, and two functions defined on an interval in R which play the
role of the curvature of a leading curve inside the domain and the geo-
desic and normal curvature of its image. We point out that using this
correspondence we can indeed construct unsmooth examples of maps in
I2,2(Ω, R3).

2. W 2,2 immersed flat surfaces are developable

2.1. Proof of Proposition 1.1. For the convenience of the readers
the proof is divided into several lemmas.

Lemma 2.1. Let f ∈ W 1,2(Ω, R2) such that ∇f is symmetric and
singular. Then f is continuous in Ω. Moreover, for any A ⊂ Ω we have
f(A) = f(∂A).

Proof. For δ > 0 define fδ(x, y) := f(x, y) + δ(−y, x). Then fδ con-
verges uniformly to f when δ → 0 and det(∇fδ) = δ2. So fδ is a map
in W 1,2(Ω, R2) with positive Jacobian, hence open and continuous [37].
By passing to the limit, we obtain the continuity for f .

Since fδ is open we get ∂fδ(B) ⊂ fδ(∂B) for any B ⊂ Ω. As a result,
fδ is spherically pseudomonotone and by [20] we can apply the coarea
formula to obtain |fδ(A)| = δ2|Ω| → 0 as δ → 0. Now let us suppose
that y ∈ f(A) \ f(∂A) ⊂ f(A◦) �= ∅. There exists small ε for which
B(y, ε) ∩ ∂fδ(A◦) ⊂ B(y, ε) ∩ fδ(∂A) = ∅ for 0 < δ < Cε otherwise,
y would have belonged to f(∂A). Also B(y, ε) should intersect fδ(A◦)
for small δ because of the uniform convergence of fδ towards f . As a
consequence, B(y, ε) ⊂ fδ(A◦) for every δ which is a contradiction with
the fact that fδ(A) converges to zero in measure. q.e.d.

Without loss of generality we assume from now on that f is contin-
uous on the closure of Ω and that f |∂Ω ∈ W 1,2(∂Ω, R2). In fact, by a
straightforward argument using the Fubini theorem near the boundary
it can be proved that this assumption is justified in proving Proposi-
tion 1.1.

Lemma 2.2. The set T := f(∂Ω) is compact, arc-wise connected
and 1-rectifiable. Moreover, if f is not constant, for H1-almost every
y ∈ f(Ω), f−1(y) is a 1-rectifiable set with positive bounded measure.
Also, for every y ∈ T , any connected component of f−1(y) is a closed
set touching the boundary.
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Proof. The map f restricted to ∂Ω is in W 1,2(∂Ω, R2). By [22] the
change of variable formula is true for f |∂Ω and therefore f(Ω) is of
bounded H1 measure. The first claim follows using [6, Lemma 3.12 and
Corollary 3.15]. The second claim is proved considering the fact that
the map f is spherically pseudomonotone since f(B) = f(∂B) for every
ball B ⊂ Ω. Therefore using the same arguments as in [20] we can use
the coarea formula for f : Ω → T :∫

T
H1(f−1(y)) dy =

∫
Ω
|J1f | =

∫
Ω
|∇f | < ∞.

This proves that f−1(y) is a 1-rectifiable set with finite H1 measure for
almost every y ∈ T .

Let C be any connected component of f−1(y). Note that f−1(y) is
closed in Ω since f is continuous. Therefore C is closed too. We argue
by contradiction and assume C ∩ ∂Ω = ∅. In this case, we claim we can
write f−1(y) as a union of two disjoint and nonempty closed and open
subsets: C1 ⊂ Ω and C2. This will lead to a contradiction: Let Aδ be
any δ-neighbourhood of C1 in Ω which has no intersection with C2∪∂Ω.
This is possible since both C1 and C2 ∪∂Ω are compact and hence have
positive distance from each other. As a consequence,

∂Aδ ∩ (C1 ∪ C2) = ∂Aδ ∩ f−1(y) = ∅.
This contradicts Lemma 2.1 because y ∈ f(Aδ) ⊂ f(∂Aδ).

So to finish the proof we shall prove the above claim. This is a
consequence of the equivalence of components and quasicomponents for
compact spaces (See [17], §42, II.2). By definition, a quasicomponent
of a topological space is the intersection of closed and open subsets of
the space. So C =

⋂
j Uj where each Uj is open and closed in f−1(y).

Hence
f−1(y) ∩ ∂Ω ⊂ f−1(y) \ C =

⋃
j

(
f−1(y) \ Uj

)
.

This gives an open covering of the compact set f−1(y) ∩ ∂Ω. Thus for
some N > 0

f−1(y) ∩ ∂Ω ⊂ C2 :=
N⋃

j=1

(
f−1(y) \ Uj

)
.

Therefore C1 := f−1(y)\C2 is a subset of Ω containing C. Both C1 and
C2 are open and closed in f−1(y) because the Uj are open and closed,
which proves our claim. q.e.d.
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Lemma 2.3. For almost all y ∈ T any connected component of
f−1(y) is a segment which joins ∂Ω at one of its ends.

Proof. Let T1 ⊂ T be the set of points y in T for which f−1(y) is a
1-rectifiable set with finite H1 measure and that T has a tangent at y.
Let A0 ⊂ Ω be the set of all points x ∈ Ω for which ∇f(x) is either zero
or is not a singular symmetric matrix and let D1 be the set of all points
x ∈ Ω for which ∇f(x) is the total differential of f at x, i.e.,

f(y) − f(x) −∇f(x)(y − x) = o(|y − x|).

By ([20], Theorem 3.3) D0 := Ω \ D1 is of measure zero. Thus, by
coarea formula, we obtain that for some T0 ⊂ T1 of null H1-measure

H1(f−1(y) ∩ (A0 ∪ D0)) = 0; ∀y ∈ T2 := T1 \ T0.

Let y ∈ T2 and let C be any connected component of f−1(y). By
Lemma 2.2 there is a point x0 ∈ C ∩ ∂Ω. By [6], Lemma 3.12 and
Corollary 3.15, C is arc-wise connected and 1-rectifiable. Note that by
rectifiability, C is locally the graph of some Lipschitz map. Therefore
for any point x ∈ C ∩ Ω there exists a Lipschitz curve φ : [0, 1] → C
such that φ(0) = x0, φ(1) = x and φ′(t) �= 0 for almost all t ∈ [0, 1].
Since y /∈ T0, we can write ∇f along the image of φ as

∇f(φ(t)) = λ(t)a(t) ⊗ a(t) a.e. t ∈ [0, 1],

where a(t) ∈ S1. Since ∇f(φ(t))(v) for v ∈ R
2 is tangent to T at y, we

deduce that for almost every t ∈ [0, 1], a(t) is parallel to Ty, the tangent
to T at y. Meanwhile g := f ◦ φ is constant on [0, 1] and f has a total
differential in almost every point of g([0, 1]) since y ∈ T2. Therefore as
in ([21], Theorem 4.2) the chain rule applies to g and we obtain

∇f(φ(t))(φ′(t)) = 0.

Thus φ′(t) is orthogonal to a(t) for almost every t (Note that λ(t) �= 0
a.e.). As a consequence φ′(t) is orthogonal almost every where to the
tangent Ty, hence φ lies on a straight line. As a conclusion C is a
segment in Ω one of whose ends is x0. q.e.d.

Lemma 2.4. For almost every y ∈ T any connected component of
f−1(y) is a segment joining ∂Ω at its both ends.

Proof. For k = 1, 2 let πk : T → R be the projection of T on the the
kth axis and put fk : πk ◦ f . Since H1(T ) < ∞, H1(T ∩L) > 0 only for
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countably many straight lines L ⊂ R
2. Thus by rotating the coordinate

system in R
2 we can assume that

H1(π−1
k (yk)) = 0 ∀yk ∈ πk(T ) k = 1, 2.(2.3)

We claim that for almost all value y ∈ T2, f is constant on any connected
component of f−1

k (yk) and the constant value is in T2. Let

T3 := T2\ ⋃
k=1,2

π−1
k (πk(T \ T2)).

By (2.3), H1(T2 \T3) = 0. For y ∈ T3 and Ck any connected component
of f−1

k (yk), f(CK) ⊂ π−1
k (yk) ⊂ T2 is connected and of measure zero,

hence a singleton. As a consequence for y ∈ T3, the connected compo-
nents of f−1

k (yk) are segments joining ∂Ω at one side. Again by using the
coarea formula for f1 and f2 we can be assured that H1(f−1

k (yk)) < ∞
for almost all y ∈ T3. Let T4 be the set of point in T3 which satisfy this
last condition.

To prove Lemma 2.4 it is sufficient to prove that the H1-measure of
the set of points in T4 for which the conclusion of the lemma fails is
zero. Let y ∈ T4 be such a point and let C be any connected component
of f−1(y). By Lemma 2.3, C is a segment joining ∂Ω at one of its ends
x0. So x′0, the other end of C, belongs to Ω.

In the first step we prove that for some δ > 0

f−1
k (yk) ∩ B(x′0, δ) = C ∩ B(x′0, δ), k = 1, 2.(2.4)

Otherwise there is a sequence of points xi ∈ f−1
k (yk) \ C converging to

x′0. Note that by passing to a subsequence we can assume that for i �= j,
xi and xj belong to different connected components of f−1

k (yk). Let Ci

be the connected component passing through xi. Since Ci is a segment
joining the boundary of Ω, we obtain

|Ci| ≥ dist(xi, ∂Ω) ≥ dist(x′0, ∂Ω) − δ > ρ > 0, ∀i ∈ N.

This contradicts H1(f−1
k (yk)) < ∞. Hence (2.4) is true and as a conse-

quence x′0 is a local extremum for f1 and f2. Indeed since B(x′0, δ) \ C
is connected, Ik = fk(B(x′0, δ)\C) is a connected subset of R. By (2.4),
yk /∈ Ik thus Ik lies entirely on one side of yk which proves our claim.

Let B0 be the set of local extrema of f1 and f2 in Ω. In order to finish
the proof of the lemma, it is sufficient to prove that H1(f(B0)) = 0.
Assume that this is not true and suppose, for instance, H1(f1(B0)) > 0.
Let E be the set of all local extrema of f1 in Ω. Then E =

⋃
Em, where

Em consists of all the points x ∈ Ω such that x is a local extremum in
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the ball of radius 1/m around itself. If f1(E) is uncountable, there exists
m ∈ N for which f1(Em) is uncountable too. Hence there exists E′, an
uncountable subset of Em, such that f1(x) �= f1(x′) whenever x, x′ ∈ E′

are different. Since E′ is infinite, it has an accumulation point in Ω and
we can find x1, x2, x3 ∈ E′ such that 0 < |xi − xj | < 1/2m. But each xi

must have been a local extremum in a ball of radius 1/m around itself
which leads to a contradiction. q.e.d.

We finish the proof of Proposition 1.1. Let x ∈ Ω be an arbitrary point
and assume that f is not constant in its neighbourhood. By continuity
of f , H1(f(B(x, δ)) > 0 for any small enough δ > 0. So by Lemma 2.4
we can find segments joining ∂Ω arbitrarily near to x on which f would
have pairwise distinct constant values, i.e., no two such segments can
intersect each other in Ω, particularly in a neighbourhood of x. By
choosing a sequence of these segments converging to x in distance we
obtain a segment passing through x and joining ∂Ω on its both ends on
which f must be constant by continuity. q.e.d.

2.2. Proof of Theorem II. Consider the second fundamental form
of u ∈ I2,2(Ω, R3):

II(u) :=
[

u,xx ·n u,xy ·n
u,yx ·n u,yy ·n

]
∈ L2(Ω, M2×2),

where n := ux ∧ uy is the unit normal field to the image u(Ω).

Lemma 2.5. The following equations are satisfied in the sense of
distributions

∂II11
∂y

=
∂II12
∂x

,
∂II21
∂y

=
∂II22
∂x

, det II = 0.(2.5)

Proof. By classical mollifying technics we can approximate u in the
W 2,2 norm by a sequence of smooth maps um ∈ W 2,2(Ω, R3) satisfy-
ing |∇um|2∞ ≤ 2. Let gij(um) be the coefficients of the metric matrix
(∇um)T∇um. Let Aij(um) = um,ij · n(um). We note that since u is an
isometry, u,ij is orthogonal to u,x and u,y almost everywhere. Therefore
Aij(u) = IIij(u) and

det II = u,xx ·u,yy −u,xy ·u,xy .

We have the following two identities for the smooth um

Aix,y − Aiy,x = u,ix ·n,y −u,iy ·n,x ,

and
−2u,xx ·u,yy +2u,xy ·u,xy = gxx,yy +gyy,xx −2gxy,xy .
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By passing to the limit in the sense of distributions we obtain the iden-
tities in (2.5). q.e.d.

As a consequence, there exists fu ∈ W 1,2(Ω, R2) such that ∇fu =
II is symmetric and singular. Again we may assume that fu|∂Ω ∈
W 1,2(∂Ω, R2) and is continuous in Ω. Applying Proposition 1.1, it is
sufficient to prove that u is affine on the connected components of al-
most every inverse image of fu. Note that for almost every z ∈ Tfu ,
H1(f−1

u (z)) < ∞ and∫
f−1

u (z)
|II| dH1 =

∫
f−1

u (z)
|∇fu| dH1 < ∞(2.6)

since by Lemma 2.2 the coarea formula is applicable to fu and we have∫
Tfu

dz

∫
f−1

u (z)
|∇fu| dH1 =

∫
Ω
|∇fu|2 < ∞.

Let C be a connected component of such f−1
u (z), which is a segment in

the direction of �v ∈ R
2 and touching ∂Ω on its both ends. By (2.6),

II ∈ L1(C, R2×2). Since fu is constant on C we obtain II�v = 0. The
conclusion easily follows. q.e.d.

Remark 2.6. In order to prove Theorem II we could have also ap-
plied Proposition 1.1 to the vector field n : Ω → S2 which satisfies
J2n = 0 for u ∈ I2,2(Ω, R3).

3. Approximating isometric immersions

In this section we show how to exploit the developability of u(Ω) to
approximate u by smooth maps in I2,2(Ω, R3).

3.1. Preliminaries. Let us introduce some notions:

Definition 3.1. We say that a differentiable curve γ : [0, l] → Ω,
parameterised by arclength and joining two distinct points, is a leading
curve if it is orthogonal to the inverse images of fu in the regions where
fu is not constant.

By Corollary 1.2 the leading curves exist and have bounded curvature
κ defined by

γ′′ = κN

where N := (−γ′
2, γ

′
1) is the unit normal vector of the curve γ. So by

the Sobolev injection Theorem the leading curves are C1,α for α < 1.
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Also the leading front of γ at the point t ∈ [0, l] is defined to be

Fγ(t) := {γ(t) + sN(t); s ∈ R} .

Definition 3.2. We say that a curve γ covers the domain S ⊂ Ω if

S ⊂ {γ(t) + sN(t) ; s ∈ R, t ∈ [0, l] } .

By Ω(γ) we refer to the biggest set covered by γ in Ω.

Lemma 3.6. Every covered domain is convex.

Proof. It is a direct consequence of the convexity of Ω. q.e.d.

To prove the theorem we first divide Ω into domains on which u is
affine or which are covered by leading curves, such that each two do-
mains encounter on a segment joining ∂Ω at its both ends (Remark 1.3).
As a result more than two such domains can join together only at a
corner on the boundary and a covered domain can at most have two
segments as its boundary inside Ω. Then what remains is to approxi-
mate u on each covered domain successively in a way that the boundary
values match smoothly.

To persuade the readers that we can perfectly match the boundary
values we have no other way than to show how we construct our ap-
proximation. We first prove the theorem for a covered domain Ω(γ).

Define the leading curve corresponding to γ in u(Ω) to be γ̃ := u ◦ γ
and consider the Darboux frame (t,v,n) of this curve in the surface:


t := γ̃′

v := ∇u(N)
n := t × v.

Since u is an isometric affine map along the N direction we obtain

u(γ(t) + sN(t)) = γ̃(t) + sv(t)(3.7)

for all t, s for which the identity makes sense. By deriving with respect
to t we realize

v′ = −κt(3.8)

is the necessary and sufficient condition for that ∇u ∈ O(2, 3) almost
everywhere. Let us consider the derivative of the Darboux frame of γ̃
as in [33, p. 277]: 


t′ = κgv +κnn
v′ = −κgt +τgn
n′ = −κnt −τgv.

(3.9)
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Hence, by (3.8), 


κg = κ

τg = 0
(3.10)

is the necessary and sufficient condition that (3.7) defines an isometry
on Ω(γ).

Before proceeding let us also study the map fu as defined in Section 2.
The map fu is constant on the front lines, therefore:

fu(γ(t) + sN(t)) = fu ◦ γ(t) = Γ(t)

for some curve Γ ∈ W 1,2([0, l], R2). Straightforward calculations yield

Γ′(t) = κn(t)γ′(t).

The natural way to analyse the situation would be to write u in terms
of the new coordinate system defined by γ and the orthogonal segments.
We put

Φγ : Ω(l, sγ
−, sγ

+) → Ω(γ), Φγ(t, s) := γ(t) + sN(t)(3.11)

where
Ω(l, sγ

−, sγ
+) := {(t, s) ∈ [0, l] × R; γ(t) + sN ∈ Ω(γ)}

=
{
(t, s) ∈ [0, l] × R; sγ

−(t) < s < sγ
+(t)

}
where sγ

− < 0 < sγ
+ are continuous functions on [0, l] (|sγ

±(t)| > 0 since
γ(t) ∈ Ω).

We also define

Iγ :=
{
t ∈ [0, l];Fγ(t) ∩ Fγ(t′) ∩ Ω = ∅ ∀t′ ∈ [0, l]

}
.

Because of continuous dependence of Fγ(t) on t, Iγ is an open subset of
[0, l]. Observe that if t ∈ Iγ , then 1 − sκ(t) > 0 for sγ

−(t) ≤ s ≤ sγ
+(t).

Put
I0 := [0, l] \ Iγ .

Assume that x ∈ Fγ(t)∩Fγ(t′)∩Ω for t < t′. A simple geometric obser-
vation shows that [t, t′] ⊂ I0, because the barrier formed by Fγ(t) and
Fγ(t′) over γ blocks the way to the leading fronts of γ between t and t′

to get out of Ω without touching these two lines. Doing straightforward
calculations we obtain

ux ◦ Φ(t, s) = γ′
1(t)t(t) − γ′

2(t)v(t)(3.12)

uy ◦ Φ(t, s) = γ′
2(t)t(t) + γ′

1(t)v(t)
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and 


∫
Ω(γ)

|u|2dx =
∫

Ω(l,sγ
−,sγ

+)
‖γ̃(t) + sv(t)‖2(1 − sκ(t))dtds

∫
Ω(γ)

|∇u|2dx = 2|Ω(γ)|

∫
Ω(γ)

|∇2u|2dx =
∫

Ω(l,sγ
−,sγ

+)
ζ(t, s)dtds

(3.13)

where

ζ(t, s) :=




κ2
n(t)

1 − sκ(t)
if t ∈ Iγ

0 otherwise.

The geometric interpretation of the last equality is that if for t1 < t2,

x ∈ Fγ(t1) ∩ Fγ(t2) ∩ Ω(γ) �= ∅,

then u should be an affine map on the domain covered by γ|[t1,t2] other-
wise the W 2,2 norm would explode around the vertex x. Hence, κn = 0
in [t1, t2] too. Applying again the same change of variable computations
to fu we have the following equality:

‖∇fu‖2
L2 =

∫
Ω(l,sγ

−,sγ
+)

ζ(t, s)dtds.

To approximate u on Ω(γ) we proceed in this way: We search for
smooth curves γm and γ̃m approximating γ and γ̃ in suitable norms and
satisfying Equations (3.9) and (3.10). The map um defined by

um(γm(t) + sNm(t)) := γ̃m(t) + svm(t)(3.14)

would be a smooth isometry which we would hope to be our approxi-
mating sequence. However, a major obstacle to this enterprise is that
Ω(γm) may not coincide with Ω(γ) while we want our approximating
sequence to be defined on the latter. But since γm converges to γ, its
covered domain will cover a major part of Ω(γ) and we would be able
to extend our maps to this domain.
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3.2. Approximation process for u|Ω(γ). In the first step we modify
γ properly to avoid some technical difficulties.

Lemma 3.7. We can assume, if necessary by modifying γ, that

Fγ(t) ∩ Fγ(t′) ∩ Ω = ∅
for all t �= t′.

Proof. It is sufficient to modify the leading fronts on the connected
components of I0. This is possible since u is affine on the region covered
by γ|I0 . If [t1, t2] is such an interval, we can consider the new leading
fronts of γ inside

⋃
t∈[t1,t2] Fγ(t) to be the lines passing through Fγ(t)∩

Fγ(t) ∈ R
2 \ Ω. Then, to obtain a new leading curve, we integrate the

unit normal vector field to our new set of leading fronts. q.e.d.

Let us now define two new functions on [0, l]:

Sγ
+(t) := inf

{
s > 0; γ(t) + sN(t) /∈ Fγ(t′) if Fγ(t′) �= Fγ(t)

}
≥ sγ

+ ,

and

Sγ
−(t) := sup

{
s < 0; γ(t) + sN(t) /∈ Fγ(t′) if Fγ(t′) �= Fγ(t)

}
≤ sγ

−.

Since γ and N are continuous and Ω(γ) is convex with regular upper
and lower boundaries, Sγ

± are continuous. We have
1

Sγ
−(t)

≤ κ(t) ≤ 1
Sγ

+(t)
.

Put
ϕγ
± := Sγ

± − sγ
±

and
ϕm(t) := min

{
ϕγm

+ (t),−ϕγm
− (t)

}
.

Notice that

µ
(
ϕ−1(0) \ κ−1

n (0)
)

= 0,(3.15)

otherwise the L2 norm of the second derivatives of u in (3.13) would not
be finite.

Proposition 3.2. There exists a sequence of isometries um ∈
W 2,2(Ω(γ), R3) converging strongly to u for which ϕm(t) > ρm > 0 for
a suitable leading curve γm.

Remark 3.7. We construct this sequence such that γm(0) = γ(0)
and γ′(0) = γ′

m(0) for the corresponding leading curves. In other words
Fγm(0) = Fγ(0).
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Figure 2. Dilation of Ω(γ).

Proof. We construct an approximating sequence um with the desired
characteristics. Consider Dm : R

2 → R
2 to be the dilation in the plane

centred at x0 = γ(0) and defined by

Dm(x) :=
m

m − 1
(x − x0) + x0.

Also consider the dilation in R
3 centred at y0 = u(x0) and defined by

D̃m(y) :=
m

m − 1
(y − y0) + y.

Put Ωm := Dm(Ω(γ)). We define the sequence ũm : Ωm → R
3 as follows

ũm := D̃m ◦ u ◦ D−1
m .

Note that since Ω(γ) lies entirely in one side of Fγ(0), Ω(γ) ⊂ Ωm, so
ũm is well-defined over Ω(γ). The sequence ũm converges strongly to u
in W 2,2(Ω(γ), R3) and it is an isometric immersion. We should modify
it slightly to satisfy the condition ϕm > 0. Note that the curve

γm(t) := Dm ◦ γ

(
m − 1

m
t

)

defined on [0, m
m−1 l] is a leading curve for ũm. Put

l∗m := sup
{
t; γm(t) ∈ Ω(γ) and Fγm(t) ∩ Fγ(l) ∩ Ω(γ) = ∅

}
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and define um : Ω(γ) → R
3 by

um(x) :=




ũm(x) if x ∈ Fγm(t) for some t ≤ l∗m − 1
m

,

∇ũm

(
γm

(
l∗m − 1

m

)) (
x − γm

(
l∗m − 1

m

))
+ũm

(
γm

(
l∗m − 1

m

))
otherwise.

q.e.d.

Proposition 3.3. Assume that ϕ(t) > ρ > 0 on [0, l]. Then we
can construct a sequence of smooth maps in I2,2(Ω(γ), R3) converging
strongly to u.

Proof. Let u : Ω(γ) → R
3 be such that ϕ(t) > ρ > 0. We choose

uniformly bounded continuous functions 1
Sγ
−
≤ κm ≤ 1

Sγ
+

which converge

to κ almost everywhere in [0, l]. We define γm to be the curve with
curvature κm and with initial conditions γm(0) = γ(0) and γ′

m(0) =
γ′(0). This curve is uniquely defined and smooth. A simple observation
using the Poincaré inequality for intervals shows that γm → γ in W 2,p

for every p < ∞. Put


l∗m := l if Ω(γ) ⊂ Ω(γm)

l∗m := sup
{
t; Fγm(t) ∩ Fγ(l) ∩ Ω(γ) = ∅

}
otherwise.

Note that l∗m → l as m → ∞. Also, since Nm converges uniformly to
N and Ω(γ) is convex, Sγm

± and sγm
± converge uniformly to Sγ

± and sγ
±

respectively.
To define the curves γ̃m, first we choose a suitable converging sequence

of smooth functions gm ∈ L2([0, l]) such that

gm −→ κn a.e. in [0, l].

Recall that by (3.13) κn ∈ L2([0, 1]) so this is possible. Let ψ be any
smooth positive function which is 0 on [−1,∞) and 1 out of (−2,∞).
We put

κn;m(t) := ψ (m(t − l∗m))
√

ϕm

ϕ
(t)gm(t), t ∈ [0, l]
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and we solve the following linear system for the initial values tm(0) =
t(0), vm(0) = v(0) and nm(0) = n(0):

 t′m
v′

m

n′
m


 =


 0 κm κn;m

−κm 0 0
−κn;m 0 0





 tm

vm

nm


 .(3.16)

The solution is a unique moving orthonormal frame in R
3 because the

matrix is skew-symmetric. The curve γ̃m : [0, l] → R
3, whose Darboux

frame is (tm,vm,nm), is defined by the following equation

γ̃′
m = tm, γ̃m(0) = γ̃(0)

and is smooth because of the smoothness of κn;m and κ.
We can now proceed to define our approximating sequence um on

Ω(γ). For (t, s) ∈ Ω(l, sγm
− , sγm

+ ) we put

um(Φm(t, s)) := γ̃m(t) + svm(t)

where Φm := Φγm is as in (3.11). um is a well-defined smooth isometry
over Ω(γ)∩Ω(γm) and can be extended by an affine isometry over Ω(γ).
The sequence um : Ω(γ) → R

3 converges strongly in W 2,2(Ω(γ), R3) to
u. q.e.d.

Combining Propositions 3.2 and 3.3 we get a smooth approximation
sequence for any map u ∈ W 2,2(Ω(γ), R3).

3.3. Proof of Theorem I. We say a connected maximal sub-domain
on which u is affine is a body if its boundary contains more than two seg-
ments inside Ω. Respectively an arm is a maximal sub-domain covered
by some leading curve γ. By Theorem II, Ω is partitioned into bodies
and arms.

Lemma 3.8. To prove Theorem I we can assume the number of bod-
ies to be finite.

Proof. In cases where the above condition is not satisfied, the number
of the vertices of bodies on ∂Ω would be infinite. This yields that for all
the bodies except for a finite number, we can extend the map by affine
extension to the boundary without changing much the W 2,2 norm of
u. Hence the maps with finite number of bodies are strongly dense in
I2,2(Ω, R3) and our assumption is justified. q.e.d.

Lemma 3.9. Assume that the number of bodies is finite. Then to
prove Theorem I we can assume that the complement of the union of
the bodies is covered by a finite number of arms.
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Proof. We can write the complement of bodies in Ω as a finite union of
its connected components

⋃N
j=1 ∆j . If the region ∆ = ∆j is between two

bodies A and B, we can consider it as a union of segments joining ∂Ω at
their both sides in whose directions u is affine. We denote these segments
by the term leading segments. The middle points of the leading segments
form a Lipschitz curve parameterised by arclength γ0 : [0, T ] → Ω which
joins the segment A ∩ ∆ to the segment B ∩ ∆. Note that γ0 may not
be a leading curve. We consider the unit vector field v in ∆ which
is orthogonal to these covering segments everywhere and is pointing
towards B. Let x0 = γ0(0). For given xi−1 ∈ Ω, we define the curve
γi : [0, Ti] → Ω to be the maximal solution of

γ′
i(t) = v(γi(t)); γi(0) = xi−1

and we define xi to be the middle point of a leading segment passing
through γi(Ti).

We claim that a finite number of γi is sufficient to cover all ∆. Oth-
erwise, for every i, γi(Ti) does not belong to B ∩ ∆. Note that we can
prolong γi inside ∆ as far as it does not touch ∂∆. As a consequence
Ti+1 would be at least equal to the distance of xi and ∂Ω which is
uniformly greater than some positive constant ρ > 0.

However, following the same calculations as in the previous section
we have

|Ω(γi)| =
∫

Ω(γi)
dx =

∫ Ti

0

∫ s
γi
+ (t)

s
γi
− (t)

(1 − sκi(t)) dtds ≥ ρl

2

where l is the minimum length of the leading segments. The claim is
proved since the area of ∆ is not infinite.

Indeed it is sufficient to prove the approximation Theorem I for when
all ∆i are as above. Otherwise, if the region ∆ = ∆j has common
boundary with at most one body, we approximate the map u by a
sequence of maps whose corresponding ∆i’s satisfy always the above
condition: Consider again the curve γ0 : [0, T ] → ∆ as above. For
t ∈ [0, T ] we denote the leading segment passing through γ0(t) by E(t).
For ε > 0, we modify u by affine extension over the region

⋃
t<ε E(t) ∪⋃

t>T−ε E(t). The modified maps converge in W 2,2 norm to u and by
what preceded each of them divides Ω into a finite number of bodies
and arms. q.e.d.



66 M.R. PAKZAD

B
A

A B

Figure 3. Bodies A and B in Ω and the graph obtained
by their retraction.

Now, since Ω is convex it is simply-connected. We claim that two
bodies are connected only through one chain of bodies and arms: It suf-
fices to consider the graph obtained by retracting bodies to vertices and
arms to edges. This graph is simply-connected because it is a deforma-
tion retract of Ω. Therefore every two vertices are connected through
only one chain of edges, which proves the claim (Figure 3). This helps us
to construct our approximation maps on whole Ω without any problem:
We begin by a central body A and define our approximation sequence
on its arms as in previous section. Note that by our construction the
approximation sequence is affine near the free hands of our arms. If
necessary we continue our approximation on the chain of arms getting
out of one side of A until we reach to another body B. So in each step
we fix the boundary value of the map in one side of the arm and the
value at the other side is given by an affine map. This assures us that
the new maps are smooth at these joints. When we reach to body B,
all we need is to modify the map on B by an affine transformation in R

3

such that it equals the affine map on the free hand of the last arm in the
chain and that we can perfectly match the two values on the connecting
edge. Then we continue our construction using B as a new point of
depart. Note that we will never come back to the body A or any of
its arms because of what we said in the beginning of the paragraph,
hence the construction is consistent. Since the operation is finished in
finitely many steps, we can repeat the arguments of the last section on
the whole Ω and prove the theorem. q.e.d.

The proof for the second part of the theorem follows the same lines.
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deux appendices. Monografie Matematyczne, Tom 21, Państwowe Wydawnictwo
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